Directed acyclic graphs, sufficient causes and the properties of conditioning on a common effect

BY TYLER J. VANDERWEELE
Department of Health Studies, University of Chicago
5841 South Maryland Avenue, MC 2007, Chicago, IL 60637
vanderweele@uchicago.edu

AND JAMES M. ROBINS
Departments of Epidemiology and Biostatistics, Harvard School of Public Health
677 Huntington Avenue, Boston, MA 02115
robins@hsph.harvard.edu
Abstract

Sufficient-component causes are incorporated into the directed acyclic graph (DAG) causal framework in order to make apparent several properties of conditioning on a common effect. By incorporating sufficient causes on a graph, it is possible to detect conditional independencies within strata of the conditioning variable which are not evident on DAGs without the representation of sufficient causes. It is also possible to determine the sign of the conditional covariance of two causes when conditioning on their common effect if some knowledge of the sufficient cause mechanisms for the common effect is available. The incorporation of sufficient causes within the DAG framework also allows for the representation of interactions on DAGs and for the unification of several different causal frameworks. For illustration, the results are applied to an example concerning the familial coaggregation of two disorders.

Introduction

Directed acyclic graphs (DAGs) have been used in epidemiology to represent causal relations among variables and they have been used extensively to determine which variables it is necessary to condition on in order to control for confounding (1-4). In some cases, conditioning on a common effect can introduce bias even when none was present without conditioning (2). Within the DAG framework this is referred to as collider stratification bias. Greenland (5) argues that in many cases, collider stratification will induce quantitatively less bias than will traditional confounding. Beyond this, relatively little is understood about the consequences of conditioning on a common effect. In this paper, we demonstrate how Rothman’s sufficient-component cause (SCC) model (6) can be represented on a causal DAG and how doing so elucidates the properties of conditioning on a common effect. We first review the SCC and DAG frameworks. We then provide a motivating example concerning familial coaggregation. Theory is then developed concerning the incorporation of sufficient causes on DAGs and on conditional independence and conditional covariance properties of conditioning on a common effect. Several previous papers have focused on how the SCC framework is related to the potential outcomes causal framework (7-12). Here our focus will be the relation between the SCC framework and the DAG framework. We furthermore discuss how the theory developed helps unify these various causal frameworks. We finally return to the motivating example and show how the methods developed in this paper can be applied and then conclude with some additional discussion.

Sufficient-Component Causes

Rothman’s SCC framework conceptualized causation as a series of different causal mechanisms each sufficient to bring about the outcome. These causal mechanisms Rothman called "sufficient causes" and conceived of them as minimal sets of actions, events or states of nature which together initiated a set of events resulting in the outcome. For a particular outcome there would likely be many different sufficient causes i.e. many different causal mechanisms by which the outcome could come about. Each sufficient cause involved various component causes. Whenever all components of a particular sufficient cause were present, the outcome would inevitably occur; within every sufficient cause, each component would be necessary for that sufficient cause to lead to the outcome.

We will use the following notation. An event is a binary variable taking values in \{0, 1\}. The OR operator, \lor, is defined for two events A and B such that $A \lor B = 1$ if and only if either $A = 1$ or $B = 1$. The complement of an event A will be denoted by \overline{A}. A conjunction or product of the events $X_1, ..., X_n$ will be written as $X_1 \cdot \cdot \cdot X_n$ so that $X_1 \cdot \cdot \cdot X_n = 1$ if and only if each of the events $X_1, ..., X_n$ takes the value 1. Under the SCC framework (6), a series of events or conditions or causes, $F_1, ..., F_m$, all of which are binary is said to be a sufficient cause for D if $F_1 \cdot \cdot \cdot F_m = 1$ implies that $D = 1$ and if $F_1, ..., F_m$ is restricted to the minimum number of required components. If $S_1, ..., S_n$ are all the sufficient causes for D where each S_i is made up of some product of components which are binary $S_i = F_{i_1} \cdot \cdot \cdot F_{i_{m_i}}$ so that $D = S_1 \lor \cdot \cdot \cdot \lor S_n$ then we will say that $S_1, ..., S_n$ are determinative for D.
Directed Acyclic Graphs

A DAG is composed of variables (nodes) and arrows between nodes (directed edges) such that the graph is acyclic i.e. such that it is not possible to start at any node, follow the directed edges in the arrowhead direction and end up back at the same node. A causal DAG is one in which the arrows can be interpreted as causal relationships and in which all common causes of any pair of variables on the graph are also included on the graph. If there is a directed edge from A to Y then A is said to be a parent of Y and Y is said to be a child of A. Additional details concerning causal DAGs can be found in the work of Greenland et al. (2). Greater formalization is provided in Pearl’s work (1, 13) in which DAGs are considered as a graphical representation of structural equations such that each variable is defined as a function of its parents and a random error term.

Statistical associations on causal directed acyclic graphs can arise in a number of ways. Two variables, A and B, may be statistically associated if A is a cause of B or if B is a cause of A. Even if neither is the cause of the other, the variables A and B may still be statistically associated if they have some common cause C. Finally, the variables A and B may be statistically associated if they have a common effect K and the association is computed within strata of K. We will graphically represent conditioning by placing a box around the variable on the graph upon which we are conditioning.

More formally, the statistical association between variables can be determined by blocked and unblocked paths. A path is a sequence of nodes connected by edges regardless of arrowhead direction; a directed path is a path which follows the edges in the direction indicated by the graph’s arrows. A collider is a particular node on a particular path such that both the preceding and subsequent nodes on the path have directed edges going into that node i.e. both the edge to and the edge from that node have arrowheads into the node. Note that a collider is relative to a particular path: a node that is a collider on one path and may not be a collider on another path. A path between A and B is said to be blocked given (i.e. conditioning on) some set of variables Z if either there is a variable in Z on the path that is not a collider or if there is a collider on the path such that neither the collider itself nor any of its descendants are in Z. If all paths between A and B are blocked given Z then A and B are said to be d-separated given Z. It has been shown that if A and B are d-separated given Z then A and B are conditionally independent given Z (14-16).

Motivating Example

Consider a study in which each observation consists of two individuals within the same family for whom data are available regarding two diseases: bi-polar disorder, denoted by P, and binge-eating, denoted by B. Suppose further that the two diseases are such that P could cause B but B could not cause P. For example, it is possible that bi-polar disorder may lead to binge-eating but rather implausible that binge-eating would lead to bi-polar disorder. The presence of bi-polar disorder in individuals 1 and 2 is denoted by P_1 and P_2 respectively. Similarly the presence of binge-eating in individuals 1 and 2 is denoted by B_1 and B_2 respectively. Let E_i denote a certain factor particular to individual i. Let G_P denote some factor common to the family which is a cause of bi-polar but not of binge-eating. Let G_B denote some factor common to the family which is a cause of binge-eating but not of bi-polar. And let F denote some set of factors common to the family which are causes of both bi-polar and binge-eating. These causal relationships are summarized in the causal DAG given in Figure 1. The presence of factors F is said to constitute familial coaggregation (17, 18). Further detail concerning this specific example is given elsewhere (James Hudson et al., Harvard University, unpublished manuscript).
Figure 1. Causal DAG with familial coaggregation.

Suppose that data is available only on P_1, P_2, B_1, B_2 and we wish to test the null hypothesis of no familial coaggregation (i.e. the null hypothesis that there are no directed edges emanating from F). Suppose further that E_1 and E_2 are never preventive for P_1 and B_1 or for P_2 and B_2 respectively and that G_P is never preventive for P_1 or P_2 and that G_B is never preventive for B_1 or B_2. At the end of the paper we will show how tests for the null hypothesis of no familial coaggregation can be derived from the theory developed in this paper.

Sufficient Causation Structures on Directed Acyclic Graphs

If some node D is such that D and all its parents are binary and the sufficient causes for D are known then it is possible to construct a new causal DAG with the sufficient causes for D on the DAG. Consider the causal DAG given in Figure 2.

![Causal DAG without a sufficient causation structure.](image)

Fig. 2. Causal DAG without a sufficient causation structure.

Suppose that the node D and all of its parents, $E_1, ..., E_5$ are binary. Suppose further that E_1E_2 and E_3E_4 and E_4E_5 are a determinative set of sufficient causes for D. Then it can be shown (see Result 1 below) that the diagram given in Figure 3 with all of the sufficient causes for D as new nodes is also a causal DAG. To indicate that the set of sufficient causes is determinative we will add to the diagram an ellipse around the sufficient cause nodes.

![Causal DAG with a sufficient causation structure.](image)

Fig. 3. Causal DAG with a sufficient causation structure.
The example that we have given is legitimized by and is a special case of the resulted presented below. The proof of this result can be found elsewhere (19).

Result 1. Consider a causal DAG G with some node D such that D and all its parents are binary. If a determinative set of sufficient causes for D, say $S_1, ..., S_n$, can be constructed from the parents of D and their complements then a new causal DAG J can be formed by adding to G the nodes $S_1, ..., S_n$, removing the directed edges into D from the parents of D on G, adding directed edges from each S_i into D and adding directed edges into each S_i from every parent of D on G which appears in the conjunction for S_i.

When we construct these new causal DAGs with the sufficient causes we will in general replace the sufficient causes nodes S_i with the conjunctions that constitute them. We will call the resulting diagram a causal DAG with a sufficient causation structure. We will say that the node D admits a sufficient causation structure. One criticism of the causal DAG framework is that it does not allow for the representation of interactions amongst variables (9). However, causal DAGs with sufficient causation structures overcome this criticism by allowing for the graphical representation of interactions on a DAG. For example, in Figure 3, E_1 and E_2 interact synergistically in their effects on D since they are both present in a single sufficient cause where E_2 and E_3 interact antagonistically in their effects on D since E_2 and E_3 are both present in a single sufficient cause. Thus, in the case of binary variables, causal DAGs with sufficient causation structures overcome a major shortcoming in the traditional DAG causal framework.

If it is not possible to form a determinative set of sufficient causes for D from the parents of D and their complements, it may be possible to add nodes to the DAGs so that on the larger causal DAG a determinative set of sufficient causes for D can be constructed from the parents of D and their complements. We will use the terms background causes or co-causes to refer to the additional parents of D, say $A_0, ..., A_u$, which are added to the graph so as to be able to construct a determinative set of sufficient causes for D from the parents of D and their complements. Unless it is known that $A_0, ..., A_u$ have no common causes then a variable U with directed edges into each of $A_0, ..., A_u$ must also be added to the graph. It can be shown that it is always possible to find such additional nodes $A_0, ..., A_u$. In the Appendix it is shown that it is always possible to find such additional nodes for two binary causes. The proof of the more general result can be found elsewhere (19).

The result given above provides a link between all four of the causal model frameworks discussed by Greenland and Brumback (9): graphical models, potential outcome (counterfactual) models, SCC models and structural equation models. The four are linked through structural equations. Graphical models can be interpreted as diagrammatic shorthand for structural equations (1). Structural equations can be interpreted as sets of counterfactual relations (1, 7). The result presented above provides the final link by relating SCC models to graphical models and thereby also structural equation models. In fact the structural equation for each sufficient cause node S_i is given by the product of components that constitute the sufficient cause $S_i = F_1^i ... F_m^i$, since all the components are needed for the sufficient cause to be realized. The structural equation for D is given by the disjunction of the sufficient cause nodes $D = S_1 \lor ... \lor S_n$ since any of the sufficient causes suffice for the outcome D. Structural equations may thus be seen as a framework encompassing all four of these approaches to representing causal relations.

The construction of determinative sets of sufficient conjunctions for D will generally not be unique. For example, if $D = A_0 \lor A_1 E$ then it is also the case that $D = B_0 \lor B_1 E$ where $B_0 = A_0$ and $B_1 = \overline{A_0} A_1$. This non-uniqueness of the sufficient causes for D is discussed further in the following section. If the parents of D on the original DAG are labeled $E_1, ..., E_m$ then each sufficient cause S_i must either include the variable E_i in its conjunction or include $\overline{E_i}$ in its conjunction or include neither E_i nor $\overline{E_i}$ in its conjunction; clearly it cannot include both. There are thus 3^m possible combinations of the E_i’s and their complements that may appear in sufficient causes.
Conditional Independence when Conditioning on a Common Effect

Because a causal DAG with a sufficient causation structure is itself a causal DAG, the d-separation criterion apply and allow one to determine independencies and conditional independencies. A sufficient causation structure will often make apparent conditional independencies within strata of the conditioning variable which were not apparent on the original causal DAG. This is so because if some node D on a causal DAG admits a sufficient causation structure then conditioning on $D = 0$ also conditions on all sufficient cause nodes for D on the causal DAG with the sufficient causation structure. For example, consider a causal DAG with the sufficient causation structure given in Figure 4.

![Fig. 4. A sufficient causation structure with conditional independencies within the D=0 stratum.](image)

Conditioning on $D = 0$ also conditions on $E_1E_2 = 0$ and $E_3E_4 = 0$ and thus we have by the d-separation criterion that, for example, E_1 is conditionally independent of E_4 given $D = 0$ because any path from E_1 to E_4 passes through E_1E_2, which is in the conditioning set, and therefore all paths between E_1 and E_4 are blocked given $D = 0$. If the causal DAG did not have the sufficient causation structure so that the causal relationships were thus simply those given in Figure 5 then the conditional independence of E_1 and E_4 given $D = 0$ would no longer be apparent from the causal DAG because the path from E_1 to E_4 through D is no longer blocked given $D = 0$ since we are conditioning on the collider D.

![Fig. 5. A causal DAG with conditional independencies within the D=0 stratum not evident from the d-separation criteria.](image)

Our results provide the theoretical framework for and the generalization of the conditional independence example of Hernán et al. (20). To ensure that the DAG with the sufficient causation structure is itself a causal DAG, it is important that the set of sufficient causes for D on the graph is a determinative set of sufficient causes, i.e. that the sufficient causes represent all the pathways by which the outcome D may occur. Otherwise certain nodes may have common causes which are not on the graph; and the graph will then not be a causal DAG. For instance, Hernán et al. (20) in Appendix Figure 2 present an example in which the causal structures are those indicated in Figure 6.
In this example, a surgical procedure E affects survival through the removal of a tumor; haplotype U affects survival through increasing levels of low-density lipoprotein-cholesterol levels resulting in an increased risk of heart attack (whether or not a tumor is present). There are two cause-specific mortality variables: death from a tumor D_{1A} and death from heart attack D_{1B} either of which is sufficient for death D. Hernán et al. (20) claim that if death by tumor and death by heart attack are independent in the sense that they do not share a common cause and if surgery E is independent of haplotype U then E and U will be conditionally independent given $D = 0$ (i.e. amongst the survivors). They make this claim on the basis of the DAG given in Figure 6. The d-separation criterion would imply that E and U are conditionally independent given $D = 0$ since conditioning on $D = 0$ conditions also on $D_{1A} = 0$ and any path from E to U must pass through D_{1A}. However, even under the assumptions of Hernán et al. (20), the DAG in Figure 6 may not be a causal DAG; this is because the nodes D and D_{1A} may have common causes even if E and U are independent and if D_{1A} and D_{1B} have no common causes; similarly, D and D_{1B} may have common causes. Consider, for example, the causal DAG with sufficient causation structure given in Figure 7 with $D_{1A} = A_1E$ and $D_{1B} = A_2U$.

![Diagram](image)

Fig. 6. Example from Hernan et al. (Appendix Figure 2)

Fig. 7. Sufficient causation structure in which E and U are independent and have independent co-causes but are not conditionally independent given $D = 0$.

Here A_0 represents the causes of death other than tumor and heart attack; A_1 represents the causes of death by tumor other than surgery E; A_2 represents the causes of heart attack other than haplotype U. In Figure 6, D_{1A} and D_{1B} are marginally independent and have no common causes, the background causes A_1 and A_2 are marginally independent and E and U are marginally independent. However, the background causes A_0 and A_1 have common cause C_1 and the background causes A_0 and A_2 have common cause C_2. Conditioning on $D = 0$ also conditions on $A_0 = 0$, $A_1E = 0$ and $A_2U = 0$ but, conditioning on $D = 0$, there is still an unblocked path from E to U, namely $E - D_{1A} - A_1 - C_1 - A_0 - C_2 - A_2 - D_{1B} - U$. The example thus illustrates a case not considered in the conditional independence example of Hernán et al. (20) and further demonstrates the importance of ensuring that the set of sufficient causes for D displayed on the graph is a determinative set of sufficient causes so that the resulting diagram is in fact a causal DAG i.e. so that all common causes
of any two variables on the graph are also on the graph. If the sufficient causes which are added to
the DAG are not a determinative set, then the resulting diagram may not in fact be a causal DAG.

It was noted above that the set of determinative sufficient causes for D will not generally be unique. Consider the causal DAG with the sufficient causation structure indicated in Figure 8.

Suppose that A, B and C represent three toxic exposures such that A and B jointly or C alone are sufficient for the outcome D, death. Conditioning on $D = 0$ conditions also on $AB = 0$ and $C = 0$ and by the d-separation criterion, A is conditionally independent of C given $D = 0$. Suppose that the causal mechanisms are as follows: the presence of A and B jointly always causes heart failure resulting in death; in the absence of B, the toxic exposure C always causes respiratory failure resulting in death; but in the presence of B, C causes a failure of the nervous system again resulting in death. We then have three distinct causal mechanisms for death: AB, BC, and \overline{BC}. This implies that we can represent these causal mechanisms by the causal DAG with sufficient causation structure given in Figure 9.

Both Figures 8 and 9 are causal DAGs that correctly describe the causal relationships among the variables; they differ in the level of detail present. In Figure 9, conditioning on $D = 0$ conditions also on $AB = 0$, $BC = 0$ and $\overline{BC} = 0$ but the d-separation criterion no longer imply that A and C are conditionally independent given $D = 0$ because on the causal DAG, there are two unblocked paths between A and C conditioning on $D = 0$, namely $A - AB - B - BC - C$ and $A - AB - B - \overline{BC} - C$. Thus from the causal DAG given in Figure 8 it was possible to use the d-separation criterion to identify the conditional independence of A and C given $D = 0$. But from the causal DAG given in Figure 9 the d-separation criterion would not identify this conditional independence relation even though the two DAGs describe the same causal structure and even though the conditional independence relation truly does hold. The difficulty arises because on the graph in Figure 9 we are representing sufficient causes which are not minimally sufficient. The mechanisms BC and \overline{BC} are distinct, death due to a failure of the nervous system versus death due to respiratory failure, but in neither mechanism is B or \overline{B} necessary; C itself is always sufficient for death regardless of whether the toxic exposure B is absent or present. We see then that allowing sufficient causes on a causal DAG which are not minimally sufficient can sometimes obscure conditional independence relations. It may thus be desirable to use the causal DAGs given in both Figures 8 and 9: the first to make clear the conditional independence
relations and the second to represent the distinct causal mechanisms which interestingly need not be minimally sufficient.

Conditional Covariance When Conditioning on a Common Effect

If some knowledge of the sufficient causes for an outcome D is available, it will sometimes be possible to determine the sign of the conditional covariance of two causes when conditioning on a common effect. We must first however introduce the concept of a monotonic effect. Consider an outcome D with two causes of interest, E_1 and E_2. We will say that E_1 has a positive monotonic effect on D if intervening to increase E_1 will never decrease D for any individual regardless of the level to which E_2 is set; we can define a monotonic effect for E_2 on D similarly; negative monotonic effects are also defined analogously. The definition of a monotonic effect thus essentially requires that the effect of some intervention be in a particular direction for every individual in the population, not merely on average. The requirements for the attribution of a monotonic effect are thus considerable. However whenever a particular intervention is always beneficial or neutral for all individuals, one will be able to attribute a positive monotonic effect; whenever the intervention is always harmful or neutral for all individuals, one will be able to attribute a negative monotonic effect.

We now consider the relation of a monotonic effect to the sufficient causes of D. When D and all its parents are binary the presence of a monotonic effect of E on D implies that there exists a determinative set of sufficient causes for D such that E never appears in the conjunctions for any of the sufficient causes (19). Thus if two parents of D, say E_1 and E_2, both have monotonic effects on D then there exists a determinative set of sufficient causes for D such that the sufficient causes for D may have amongst their components E_1 or E_2 or $E_1 E_2$ or neither E_1 nor E_2 but never E_1 or E_2 or $E_1 E_2$. If E_1 and E_2 are independent of one another and have positive monotonic effects on D then the minimal sufficient causation structure for the causal DAG can be described by the graph given in Figure 10.

![Figure 10](image-url)

Fig. 10. Sufficient causation structure when E_1 and E_2 are independent and have positive monotonic effects on D.

With this definition of a monotonic effect we can now give Result 2.

RESULT 2. Suppose that D and all of its parents are binary and suppose that two parents of D, say E_1 and E_2, are independent and also independent of all other parents of D on the causal DAG. Suppose further that E_1 and E_2 have a positive monotonic effect on D. Then for any determinative set of sufficient causes D such that $D = A_0 \lor A_1 E_1 \lor A_2 E_2 \lor A_3 E_1 E_2$, the following hold:

(i) If $A_0 = 0$ then $\text{Cov}(E_1, E_2 | D) \leq 0$
(ii) If \(A_0 = 0 \) and \(A_1 \) and \(A_2 \) are independent then \(\text{Cov}(E_1, E_2|\bar{D}) \leq 0 \)

(iii) If \(A_1 = 1 \) or \(A_2 = 1 \) then \(\text{Cov}(E_1, E_2|D) \leq 0 \) and \(\text{Cov}(E_1, E_2|\bar{D}) = 0 \)

(iv) If \(A_1 = 0 \) or \(A_2 = 0 \) then \(\text{Cov}(E_1, E_2|D) \geq 0 \) and \(\text{Cov}(E_1, E_2|\bar{D}) \leq 0 \)

(v) If \(A_3 = 0 \) then \(\text{Cov}(E_1, E_2|D) \leq 0 \)

(vi) If \(A_3 = 0 \) and if \(A_1 \) and \(A_2 \) are independent and also \(A_0 \) is independent of either \(A_1 \) or \(A_2 \) then \(\text{Cov}(E_1, E_2|\bar{D}) = 0 \).

The assumption that \(A_0 = 0 \) is essentially the assumption that one of \(E_1 \) or \(E_2 \) is always necessary for the outcome \(D \) i.e. \(D \) cannot occur without either \(E_1 \) or \(E_2 \). The assumption that \(A_1 = 1 \) is the assumption that \(E_1 \) is itself always sufficient for \(D \); similarly the assumption that \(A_2 = 1 \) is the assumption that \(E_2 \) is itself always sufficient for \(D \). The assumption that \(A_1 = 0 \) is the assumption that \(E_1 \) by itself is never necessary for \(D \) i.e. if \(E_1 = 1 \) and \(D = 1 \) then we must have either that \(E_2 = 1 \) or that \(D = 1 \) even if \(E_1 = 0 \); similarly the assumption that \(A_2 = 0 \) is the assumption that \(E_2 \) by itself is never necessary for \(D \) i.e. if \(E_2 = 1 \) and \(D = 1 \) then we must have either that \(E_1 = 1 \) or that \(D = 1 \) even if \(E_2 = 0 \). The assumption that \(A_3 = 0 \) is essentially that there is no synergism in the SCC sense between \(E_1 \) and \(E_2 \) i.e. if \(D = 1 \) and \(E_1 = E_2 = 1 \) then either \(E_1 = 1 \) alone or \(E_2 = 1 \) alone would be sufficient for \(D \). If any of these assumptions can be made then we can draw conclusions about the conditional covariance between \(E_1 \) and \(E_2 \). Result 2 can be generalized if \(E_1 \) and \(E_2 \) are not independent. The statement and proof of this generalization is given in the supplementary material on-line. The result can also be generalized when the conditional covariance of two nodes which are not parents of \(D \) are considered (19). We give an example of one such generalization, Result 3, in the Appendix.

Motivating Example Revisited

We now return to the motivating example introduced at the beginning of the paper and show how Results 2 and 3 can be used to derive a statistical test for the presence of no familial coaggregation. We will graphically represent the monotonic effects relationships indicated earlier by signs on the appropriate edges. The null hypothesis of no familial coaggregation can then be represented by the signed causal DAG given in Figure 11 with no arrows out of \(F \).

![Figure 11. Causal directed acyclic graph with monotonic effects, under the null hypothesis of no familial coaggregation.](image)

Under the null hypothesis of no familial coaggregation, by Result 2, \(\text{Cov}(E_1, G_P|P_1 = 1) \leq 0 \) if \(E_1 \) and \(G_P \) do not exhibit synergism. By Result 3 (see Appendix) we have \(\text{sign}(\text{Cov}(B_1, P_2|P_1 = 1)) = \text{sign}(\text{Cov}(E_1, G_P|P_1 = 1)) \). Thus under the null hypothesis of no familial coaggregation, \(\text{sign}(\text{Cov}(B_1, P_2|P_1 = 1)) = \text{sign}(\text{Cov}(E_1, G_P|P_1 = 1)) \leq 0 \) if there is no synergism between \(E_1 \) and \(G_P \) in the SCC sense. Consequently, a test of the null \(\text{Cov}(B_1, P_2|P_1 = 1) \leq 0 \) is a joint test of no familial coaggregation and of no synergism between \(E_1 \) and \(G_P \). Similarly, a test of the null \(\text{Cov}(B_2, P_1|P_2 = 1) \leq 0 \) is a joint test of no familial coaggregation and of no synergism between \(E_2 \) and \(G_P \).

Discussion
The primary contributions of this paper have been a number of theoretical advances in representing and reasoning about causal relations. Specifically we have provided a link between and have helped unify several different causal models: SCC, counterfactual, graphical and structural equation models. Doing so, allowed us to derive a number of properties of conditioning on a common effect. We have shown that representing sufficient causes on a DAG can allow for the detection of conditional independence relations within strata of the conditioning variable that are not evident on traditional causal DAGs. We have also stated conditions which allow a researcher to draw conclusions about the sign of the conditional covariances of two causes when conditioning on a common effect. Finally, we have shown how sufficient causes and synergistic interactions can be graphically represented on causal DAGs.

For the theory presented in this paper to be applied to epidemiologic problems, relatively strong assumptions are needed: binary outcomes and exposures, the conditional independence assumptions of DAGs, knowledge of or conjectures about determinative sets of sufficient causes, and monotonic effects. These assumptions limit the applicability of the theory. We will discuss each of these assumptions in turn. Although the theory is limited to binary outcomes and exposures many outcomes and exposures of interest in epidemiologic research are binary. Furthermore, for ordinal or categorical exposures the theory developed can be applied by recoding the exposure as a series of binary variables; the outcome however would still need to be binary in order for Results 2 and 3 to be applied. Our results made use of the various conditional independence assumptions entailed by DAGs. Many medical and epidemiologic systems can be usefully represented by DAGs as testified to by the increasing occurrence of DAGs in the epidemiologic literature. The structure of the DAG itself implies the conditional independence assumptions which we made use of in our results. The requirement that the researcher have knowledge of or conjectures about a determinative set of sufficient causes can be somewhat relaxed, but the details are somewhat beyond the scope of the current paper (19). Monotonic effects assume that a particular exposures affects all individuals in the same direction; although this is a strong assumption, it is one that may apply to a number of epidemiologic exposures e.g. the effect of smoking on lung cancer or perhaps the effect of certain genes or environmental exposures. Furthermore, the assumption of monotonic effects can sometimes be weakened to assumptions about the ordering of intervention distributions as discussed in other work (21). Although the assumptions required to apply the theory in this paper are considerable, they are not insurmountable, as our example from psychiatric epidemiology demonstrates. Moreover our results perform an important cautionary function: they define the number, type and strength of the assumptions that are required in order to succeed in using epidemiologic data to draw conclusions from sufficient causes on causal DAGs.

The DAG framework has proved to be a useful tool for causal thinking in epidemiologic research. Several recent papers have extended the applicability of DAGs to new types of problems (20-24). The contributions in this paper concerning sufficient causes and the properties of conditioning on a common effect extend yet further the scope of the types of problems which DAGs can address.

References

Appendix

Construction of co-causes for two binary causes and a binary outcome.
Suppose that \(E_1\) and \(E_2\) are the only parents of \(D\) on the original causal DAG as in Figure 12.

\[
\begin{align*}
E_1 & \rightarrow D \\
E_2 & \rightarrow D
\end{align*}
\]

Fig. 12. Causal directed acyclic graph with two causes and no sufficient causation structure.
We will show that it is possible to construct co-causes which can be added to the DAG so that a
determinative set of sufficient causes can be formed from \(E_1, E_2, \overline{E_1}, \overline{E_2}\) and the co-causes. The
construction we give will work even if \(E_1\) and \(E_2\) have common causes. We construct \(A_0, \ldots, A_8\) so that
\(D = A_0 \lor A_1 E_1 \lor A_2 E_1 \lor A_3 E_2 \lor A_4 E_2 \lor A_5 E_1 \lor A_6 E_2 \lor A_7 E_1 \lor A_8 E_1 \lor A_8 E_2\) by defining the variables \(A_0, A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8\) as follows: Let \(D_{ij}(\omega)\) be the counterfactual value of \(D\) for individual \(\omega\) if \(E_1\) were set to \(i\) and \(E_2\) were set to \(j\) then let:
\[
\begin{align*}
A_0(\omega) &= 1, & A_1(\omega) &= 0 \quad \text{if } D_{00}(\omega) = D_{01}(\omega) = D_{10}(\omega) = D_{11}(\omega) = 1; \\
\text{let } A_1(\omega) &= A_3(\omega) = 1, & A_4(\omega) &= 0 \quad \text{if } i \neq 1, 3 \text{ if } D_{00}(\omega) = 0, D_{01}(\omega) = D_{10}(\omega) = D_{11}(\omega) = 1; \\
\text{let } A_2(\omega) &= A_3(\omega) = 1, & A_4(\omega) &= 0 \quad \text{if } i \neq 2, 3 \text{ if } D_{10}(\omega) = 0, D_{00}(\omega) = D_{01}(\omega) = D_{11}(\omega) = 1; \\
\text{let } A_3(\omega) &= 1 \text{ and } A_i(\omega) &= 0 \quad \text{for } i \neq 3 \text{ if } D_{00}(\omega) = D_{10}(\omega) = 0, D_{01}(\omega) = D_{11}(\omega) = 1; \\
\text{let } A_4(\omega) &= A_5(\omega) = 1 \quad \text{if } D_{00}(\omega) = 0, D_{01}(\omega) = D_{10}(\omega) = D_{11}(\omega) = 1; \\
\text{let } A_5(\omega) &= 1 \text{ and } A_i(\omega) &= 0 \quad \text{for } i \neq 1 \text{ if } D_{00}(\omega) = D_{01}(\omega) = 0, D_{10}(\omega) = D_{11}(\omega) = 1; \\
\text{let } A_6(\omega) &= A_8(\omega) = 1 \text{ and } A_i(\omega) &= 0 \quad \text{for } i \neq 5, 8 \text{ if } D_{00}(\omega) = D_{10}(\omega) = 0, D_{01}(\omega) = D_{11}(\omega) = 1; \\
\text{let } A_7(\omega) &= 1 \text{ and } A_i(\omega) &= 0 \quad \text{for } i \neq 5 \text{ if } D_{00}(\omega) = D_{01}(\omega) = D_{10}(\omega) = 0, D_{11}(\omega) = 1; \\
\text{let } A_8(\omega) &= A_{10}(\omega) = 1 \text{ and } A_i(\omega) &= 0 \quad \text{for } i \neq 2 \text{ if } D_{10}(\omega) = D_{11}(\omega) = 0, D_{00}(\omega) = D_{01}(\omega) = 1; \\
\text{let } A_9(\omega) &= A_7(\omega) = 1 \text{ and } A_i(\omega) &= 0 \quad \text{for } i \neq 6 \text{ if } D_{00}(\omega) = D_{01}(\omega) = D_{11}(\omega) = 0, 0, D_{01}(\omega) = D_{10}(\omega) = 1; \\
\text{let } A_{10}(\omega) &= A_4(\omega) = 0 \text{ for } i \neq 6 \text{ if } D_{00}(\omega) = D_{01}(\omega) = D_{11}(\omega) = 0, D_{00}(\omega) = D_{10}(\omega) = 1; \\
\text{let } A_{11}(\omega) &= A_4(\omega) = 0 \text{ for } i \neq 4 \text{ if } D_{01}(\omega) = D_{11}(\omega) = 0, D_{00}(\omega) = D_{10}(\omega) = 1; \\
\text{let } A_{12}(\omega) &= 1 \text{ and } A_i(\omega) &= 0 \quad \text{for } i \neq 7 \text{ if } D_{00}(\omega) = D_{01}(\omega) = D_{11}(\omega) = 0, D_{10}(\omega) = 1; \\
\text{let } A_{13}(\omega) &= 1 \text{ and } A_i(\omega) &= 0 \quad \text{for } i \neq 8 \text{ if } D_{01}(\omega) = D_{10}(\omega) = D_{11}(\omega) = 0, D_{00}(\omega) = 1; \\
\text{let } A_{14}(\omega) &= 0 \text{ for all } i \text{ if } D_{00}(\omega) = D_{01}(\omega) = D_{10}(\omega) = D_{11}(\omega) = 0.
\end{align*}
\]
The causal DAG with this sufficient causation structure is then that given in Figure 13.

![Causal DAG](image)

Fig. 13. Sufficient causation structure for \(D\) with two binary causes, \(E_1\) and \(E_2\).

Result 3.
Suppose that \(E_1, E_2\) and \(D\) are binary variables, that \(E_1\) and \(E_2\) are the only parents of \(D\), that \(F\) and \(G\) are d-separated given \(\{E_1, E_2, D\}\), that \(F\) and \(E_2\) are d-separated given \(\{E_1, D\}\) and that \(G\) and \(E_1\) are d-separated given \(\{E_2, D\}\). Suppose also that \(E_1\) is a parent of \(F\), that \(E_1\) has a monotonic effect on \(F\), that there are no intermediate variables between \(E_1\) and \(F\), and \(E_1\) and \(F\) have no common causes; and suppose that \(E_2\) is a parent of \(G\), that \(E_2\) has a monotonic effect on \(G\), that there are no intermediate variables between \(E_2\) and \(G\), and that \(E_2\) and \(G\) have no common causes then \(\text{sign}(\text{Cov}(F,G|D)) = \text{sign}(\text{Cov}(E_1, E_2|D))\).